
Linear Algebra: Supplementary Notes

Ethan Nadler

These notes were created as supplementary material for an introductory linear algebra course

at The University of California, Santa Barbara. They rely heavily on David C. Lay’s Linear

Algebra and its Application; many of the exercises and definitions come directly from this

text. However, they also include several original exercises, and some of the derivations differ

from Lay’s presentation in order to maintain a coherent narrative within each lesson.

I aimed to create a set of notes that provides a challenge for students and emphasizes some

of the more “important” concepts in the subject without spending too much time developing

a theoretical framework. Many of the lessons assume some background knowledge, hopefully

provided by the course lecture. The material is not meant to provide a comprehensive

overview of linear algebra or even of Lay’s text; while the sequence of topics usually follows

the text, the order was determined by the material presented in lecture.
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Week 1

A system of linear equations is either consistent (if it has one solution or infinitely

many solutions) or inconsistent (if it has no solutions). Note that if a system is consistent,

there’s no “in-between” case; a consistent system has either one solution or infinitely many!

Try to convince yourself of this by picturing the solution to a system of two equations as

the intersection of two lines in the x1, x2 plane. (What does this look like in 3D? Does the

argument still work?)

The coefficient matrix of a system of n linear equations,

a11x1 + a12x2 + ...+ a1nxn = c1

a21x1 + a22x2 + ...+ a2nxn = c2

.

.

an1x1 + an2x2 + ...+ annxn = cn

(1)

is the n× n matrix


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

 (2)

and the corresponding augmented matrix includes the constant terms c1, . . . , cn on the

right hand side of the matrix.

To solve a system of equations, use the following elementary row operations on the

augmented matrix:

1. Replace a row by the sum of itself and a multiple of any other row.

2. Switch any two rows.

3. Multiply any row by a nonzero constant.

Below is one example of a system to solve using the row operations. Important: practice

solving systems using row operations until you’re completely comfortable with the process.
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Question: What does the row reduced augmented matrix look like when a system has one

solution, infinitely many solutions, or no solution?

Ex. Solve the system using elementary row operations.

x1 − 3x3 = 8

2x1 + 2x2 + 9x3 = 7

x2 + 5x3 = −2

(3)

Answer: x1 = 5, x2 = 3, x3 = −1.

Ex. For the following augmented matrices, determine the value(s) of h that make the

corresponding systems consistent. Justify your answers!

[
1 h 4

3 6 8

]
(4)

[
1 4 −2

3 h −6

]
(5)

Answer: 1. All h 6= 2. 2. All h.

Ex. Suppose the following system is consistent for all values of f and g. What can you

conclude about the coefficients c and d? (Hint: think about f and g as completely unrelated

in general.)

2x1 + 4x2 = f

cx1 + dx2 = g
(6)

Answer: d 6= 2c. (Strictly speaking, we must have d 6= 2c whenever g 6= cf ; what happens if

g = cf?)
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Week 2

A linear combination of a set of vectors {v1,v2, . . . ,vn} is any vector y = c1v1 + c2v2 +

· · · + cnvn, where c1, . . . , cn are constants. Note that the vectors vj should have the same

size and that some of the ci may be 0. The idea of representing an object (such as a vector)

as a linear combination of other objects of the same kind is an extremely important concept!

The set of all linear combinations of a set of vectors {v1,v2, . . . ,vn} is called the span of

the vectors, which we denote by Span{v1,v2, . . . ,vn}.

Let’s think about span geometrically: in two dimensions, it’s clear that the vectors x =

[
1

0

]
and y =

[
0

1

]
span the entire x, y plane since we can write any vector v by decomposing it

into x and y components in the usual way:

Fig. 1.— Components of a vector in Cartesian coordinates: v = vx + vy = vxx + vyy, where

vx = cos θ v and vy = sin θ v.

Question: What if we use different vectors x′ and y′ rather than x and y to describe vectors

in the plane? Do any two vectors span the plane? Give an example of two vectors that do

not span the plane.

Ex. For what value(s) of h is b in the plane spanned by a1 and a2, where

a1 =

 1

3

−1

 , a2 =

−5

−8

2

 ,b =

 3

−5

h

? (7)

Answer: h = 3.
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Ex. Construct a 3 × 3 matrix A (with A 6= 0) and a vector b in R3 such that b is not in

the set spanned by the columns of A. Then repeat the exercise, but construct A such that

none of its entries are 0.

Answer: There are an infinite number of possibilities!

Consider matrix equations of the form Ax = b, where A is an n × n matrix and x and b

are n× 1 column vectors. Try to convince yourself of the following statement: the equation

Ax = b has a solution if and only if b is a linear combination of the columns of A.

Here are two very important properties of any m×n matrix A. For any vectors u and v (of

the appropriate size) and any constant c,

1. A(u + v) = Au + Av.

2. A(cu) = c(Au).

In other words, if A multiplies a linear combination of vectors c1v1 + · · · + cnvn, we can

multiply each vector by A, multiply by the corresponding coefficient, and add the results

together: A(c1v1 + · · ·+cnvn) = c1(Av1)+ · · ·+cn(Avn). This property is called linearity.

Ex. Let

A =

[
3 −1

−9 3

]
,b =

[
b1
b2

]
. (8)

Show that the equation Ax = b does not have a solution for all possible b. For what set of

b is there a solution?

Answer: A solution exists for all b with b2 = −3b1.

Ex. Let A be a 3×2 matrix. Explain why the equation Ax = b cannot be consistent for all

b in R3. Can you generalize your argument for an arbitrary A with n columns and m > n

rows?

Hint: Consider Ax = b explicitly for the 3× 2 case:

a11 a12
a21 a22
a31 a32

[x1
x2

]
=

b1b2
b3

 . (9)

How many equations does this represent, in how many unknowns?
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Week 3

Ex. Determine if the following set of vectors spans R3:

{1

2

3

 ,
 1

0

−1

 ,
2

2

2

 ,
2

4

6

}. (10)

Answer: The set does not span R3. Things to think about: What is the minimum number

of vectors needed to span R3? Why? Is there a “quick” way to tell whether a given set of

vectors spans Rn? (Revisit this question after we’ve covered linear independence).

A homogeneous system of linear equations has the form Ax = 0. Convince yourself of

the following statement: Ax = 0 has a nontrivial solution (i.e., x 6= 0) if and only if the

equation has at least one free variable. Homogeneous systems are very important because

any linear combination of solutions to a homogeneous system is still a solution! That is, if

we have solutions u and v of Ax = 0, meaning Au = 0 and Av = 0, then

A(cu + dv) = A(cu) + A(dv) = c(Au) + d(Av) = 0 + 0 = 0, (11)

and the linear combination cu + dv is still a solution of Ax = 0.

A nonhomogeneous system of linear equations has the form Ax = b, where b 6= 0. We will

now see the importance of homogeneous solutions. Suppose that p is a solution of Ax = b,

and suppose that vh is a solution of the corresponding homogeneous system Ax = 0. Then

the general solution to Ax = b is p + vh, since

A(p + vh) = A(p) + A(vh) = b + 0 = b. (12)

In practice, this form of a solution will automatically result from row reduction. For example,

consider the system Ax = b, where

A =

 3 5 −4

−3 −2 4

6 1 −8

 ,b =

 7

−1

−4

 . (13)

The augmented matrix row reduces to
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1 0 −4/3 −1

0 1 0 2

0 0 0 0

 , (14)

giving x2 = 2 and x1 = −1 + 4
3
x3, with x3 free. A solution to the system is then

x =

−1 + 4
3
x3

2

x3

 =

−1

2

0

+ x3

4
3

0

1

 ≡ p + x3vh. (15)

The “particular” and homogeneous solutions both come out of the row reduction process.

The homogeneous solution is always multiplied by an arbitrary parameter (here called x3).

Question: What does the row of zeros in Eq. 5 tell us about the solutions of the corresponding

system – is there a homogeneous solution? What if there were no row of zeros? (Always look

out for rows of zeros!)

Ex. True or False:

(a) A homogeneous equation is always consistent.

(b) If x is a nontrivial solution of Ax = 0, then every entry in x is nonzero.

(c) The equation Ax = b is homogeneous if the zero vector is a solution.

(d) If Ax = b is consistent, then the solution set is obtained by translating the solution

set of Ax = 0.

Answer: T, F, T, T.

A set of vectors {v1,v2, . . . ,vn} is linearly independent if the equation

x1v1 + x2v2 + · · ·+ xnvn = 0 (16)

only has the trivial solution x = 0. On the other hand, the set is linearly dependent

if there exist x1, . . . , xn, not all zero, such that x1v1 + · · · + xnvn = 0. This definition

immediately implies that the columns of a matrix A are linearly independent if and only if

the equation Ax = 0 has only the trivial solution.
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Question: For a set consisting of one vector, v, under what conditions is the set linearly

independent and under what conditions is it linearly dependent? What if the set has two

vectors, v1 and v2?

Here’s an important theorem: A set of two or more vectors is linearly dependent if

and only if at least one of the vectors is a linear combination of the others. Let’s

get some intuition for this statement; consider the set {v1,v2,v3}, and suppose that one of

the vectors – say, v2 – is a linear combination of the others. Then there exist c1, c3 such

that v2 = c1v1 + c3v3, and it’s easy to find a nontrivial solution of equation (7); just take

x1 = −c1, x2 = 1, and x3 = −c3, for example:

x1v1 + x2v2 + x3v3 = −c1v1 + v2 − c3v3 = v2 − v2 = 0. (17)

Ex. Determine if each set of vectors is linearly independent or linearly dependent:

(a)

{1

7

6

 ,
2

0

9

 ,
3

1

5

 ,
4

1

8

}

(b)

{2

3

5

 ,
0

0

0

 ,
1

1

8

}

(c)

{
−2

4

6

10

 ,


3

−6

−9

15


}

.

Answer: Dependent, dependent, independent.

Ex. Find the value(s) of h for which the vectors are linearly dependent:

 1

5

−3

 ,
−2

−9

6

 ,
 3

h

−9

 . (18)

Answer: All h. (You could row reduce, but there’s a shortcut!)

Linear Transformations: A transformation T : Rn → Rm is a mapping that assigns

each x in Rn a vector T (x) in Rm. Rn is called the domain of T , Rm is called the codomain

of T , and the set of all images T (x) is called the range of T . For a linear transformation,
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1. T(u + v) = T(u) + T(v).

2. T(cu) = c(T(u))

for all vectors u and v in Rn and any constant c. Again, as we saw with matrices, if

a linear transformation acts on a linear combination of vectors, the result is the sum of

the linear transformation acting on each vector multiplied by the corresponding coefficient:

T(c1v1 + · · ·+ cnvn) = c1(T(v1)) + · · ·+ cn(T(vn)).

Any linear transformation T : Rn → Rm can be expressed as an m×n matrix! There are sev-

eral nice examples with illustrations in the textbook, including a projection transformation

and a shear transformation.

Question: Let A be a j × k matrix. What must a and b be in order to define T : Ra → Rb

by T (x) = Ax?

Ex. Let

A =

 1 −3

3 5

−1 7

 ,u =

[
2

−1

]
,b =

 3

2

−5

 , c =

3

2

5

 , (19)

and define a transformation T : R2 → R3 by T (x) = Ax.

(a) Find the image of u under the transformation T .

(b) Find an x in R2 whose image under T is b.

(c) Is there more than one x whose image under T is b?

(d) Is c in the range of the transformation T?

Answer: (a)

 5

1

−9

, (b)

[
3/2

1/2

]
, (c) no, (d) no.

How do we actually find the matrix that corresponds to a given linear transformation? The

answer is actually very simple: if T : Rn → Rm is a linear transformation, then the columns

of the matrix A that represents this transformation are given by the action of T on the

columns of the n× n identity matrix In:
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A =
[
T (e1) . . . T (en)

]
, (20)

where e1 =


1

0
...

0

, . . . , en =


0

0
...

1

 are standard basis vectors in Rn. This works because

any vector x can be decomposed into a piece along each basis vector. For example, in R2,

x =

[
x1
x2

]
= x1

[
1

0

]
+ x2

[
0

1

]
= x1e1 + x2e2, (21)

so T (x) = x1T (e1) + x2T (e2).

Ex. Let T : R2 → R2 be a linear transformation that maps u =

[
3

4

]
into

[
4

1

]
and maps

v =

[
3

3

]
into

[
1

−3

]
.

(a) Find T (2u) and T (2u + 3v).

(b) Find the matrix A such that T (x) = Ax.

Answer: (a)

[
8

2

]
,

[
11

−7

]
, (b)

[
−8/3 3

−5 4

]
.
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Week 4

Matrix Operations: Let A and B be m× n matrices:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

 , B =


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...

bm1 bm2 . . . bmn

 . (22)

There are several matrix operations we can perform with these matrices:

1. Addition:

A + B =


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 . . . amn + bmn

 . (23)

Matrix addition only works if A and B have the same size!

2. Scalar Multiplication:

cA =


ca11 ca12 . . . ca1n
ca21 ca22 . . . ca2n

...
...

. . .
...

cam1 cam2 . . . camn

 . (24)

Now let A be an m × n matrix and B be an n × p matrix. We can then perform matrix

multiplication to form the m × p matrix C = AB. For example, if A and B are 3 × 3

matrices, we have

C = AB =

a11 a12 a13
a21 a22 a23
a31 a32 a33

b11 b12 b13
b21 b22 b23
b31 b32 b33

 . (25)

This is a good exercise to work out on your own! The answer is

C =

a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32 a11b13 + a12b23 + a13b33
a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32 a21b13 + a22b23 + a23b33
a31b11 + a32b21 + a33b31 a31b12 + a32b22 + a33b32 a31b13 + a32b23 + a33b33

 . (26)
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Warning – unlike addition or scalar multiplication, the order matters for matrix multipli-

cation! In general, AB 6= BA.

There are two more useful matrix operations: we can raise a matrix to the kth power,

Ak = AA . . .A (k times), (27)

and we can take the transpose of a matrix by interchanging its rows and columns. For

example, the transpose of the 3× 3 matrix A from equation (4) is

AT =

a11 a21 a31
a12 a22 a32
a13 a23 a33

 . (28)

Ex. Let

A =

[
3 −6

−1 2

]
, B =

[
−1 1

3 4

]
, C =

[
−3 −5

2 1

]
. (29)

Compute AB and AC.

Answer: AB = AC =

[
−21 −21

7 7

]
. Notice that AB = AC, even though B 6= C! There is

no “cancellation” allowed in equations involving matrix multiplication.

Ex. Let

A =

[
3 −6

−2 4

]
. (30)

Construct a 2× 2 matrix B such that AB = 0. Use two different nonzero columns for B.

Answer: B =

[
4 2

2 1

]
is one possible choice.

An n× n matrix A is invertible if there is an n× n matrix C such that AC = CA = In,

where In is the n × n identity matrix. C is then the inverse of A, denoted by C = A−1.

Note that not all matrices are invertible!

There’s a simple formula for the inverse of a 2×2 matrix, and a simple procedure for finding

the inverse of a larger matrix. For a 2× 2 matrix,
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A =

[
a b

c d

]
=⇒ A−1 =

1

ad− bc

[
d −b
−c a

]
. (31)

Clearly, A−1 only exists if the determinant det A = ad− bc 6= 0. To find the inverse of a

larger n× n matrix B, row reduce the augmented matrix
[
B | In

]
until B has been reduced

to In; then whatever is left on the augmented side of the matrix is B−1.

If A is an invertible n × n matrix, then the equation Ax = b has the unique solution

x = A−1b for each b in Rn.

Ex. Use matrix inversion to solve the system

8x1 + 6x2 = 2

5x1 + 4x2 = −1.
(32)

Answer: x =

[
7

−9

]
.

Ex. Find the inverse of the matrix A =

0 1 2

1 0 3

4 −3 8

, if it exists.

Answer: A−1 =

−9/2 7 −3/2

−2 4 −1

3/2 −2 1/2

.

Ex. Use matrix inversion to solve the system Ax = b, where

A =

1 0 0

1 1 0

1 1 1

 , b =

1

1

1

 . (33)

Answer: x =

1

0

0

.

Notice that if A−1 exists, then the solution to Ax = b is unique – there is only one solution!

This means that any matrix with linearly dependent rows (i.e., any matrix that can be row

reduced to something with a row of zeros) is not invertible, since the system Ax = b would

then contain a free variable and have more than one solution.
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Properties of Linear Transformations: A linear transformation T : Rn → Rm is onto

if each b in Rm is the image of at least one x in Rn. In words, T maps vectors in its domain

onto every vector in its codomain. Or, if you like, the range of T is equal to its codomain.

A linear transformation T : Rn → Rm is one-to-one if each b in Rm is the image of at

most one x in Rn. That is, each vector in Rn gets mapped to a different vector in Rm. Or,

equivalently, no two vectors have the same image under T .

Be careful – a general linear transformation can have any combination of these properties.

There are transformations that are one-to-one but not onto, onto but not one-to-one, both

onto and one-to-one, and ones that are neither of the two!

How to check whether a linear transformation is one-to-one or onto: Let T : Rn →
Rm be a linear transformation that is represented by a matrix A. Then

1. T is onto if and only if the columns of A span Rm. Ask yourself, “does A span Rm?”

2. T is one-to-one if and only if the equation Ax = 0 has only the trivial solution. Ask

yourself, “are the columns of A linearly independent?”

Ex. Let T : R2 → R3 be a linear transformation that is represented by the matrix

A =

3 1

5 7

1 3

 . (34)

Is T one-to-one? Is T onto?

Answer: T is one-to-one, but not onto. Question: Can a linear transformation from R2 to

R3 ever be onto?

Ex. Let T be a linear transformation whose action is given by

T (x1, x2, x3, x4) = 3x1 + 4x3 − 2x4. (35)

(a) T takes vectors in Rn to vectors in Rm. What are n and m?

(b) Find the standard matrix of T . Is T onto? Is T one-to-one?

Answer: n = 4, m = 1, A =
[
3 0 4 −2

]
. T is onto, but not one-to-one.
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Week 5

The invertible matrix theorem is a list of conditions that tells us whether an n × n matrix

A is invertible. It’s not important to memorize all of the various conditions; however, it’s

very important to understand why these conditions are all equivalent.

Invertible matrix theorem: Let A be an n × n matrix. Then the following statements

are equivalent (the statements are either all true, if A is invertible, or all false, if not):

(a) A is an invertible matrix.

(b) A is row equivalent to the n×n identity matrix. (This should make sense, considering

the method for finding A−1 – we row reduce
[
A | In

]
until A looks like In!)

(c) A has n pivot positions. (This is just a restatement of (b); if A has less than n pivots,

it can’t be row equivalent to In.)

(d) The equation Ax = 0 has only the trivial solution.

(e) The columns of A form a linearly independent set. (This just follows from the definition

of linear independence.)

(f) The linear transformation x → Ax is one-to-one. (Recall how we check whether a

linear transformation is one-to-one.)

(g) The equation Ax = b has at least one solution for each b in Rn. (This should make

sense because A is row equivalent to In.)

(h) The columns of A span Rn. (A restatement of (c) and/or (g).)

(i) The linear transformation x→ Ax maps Rn onto Rn.

(j) There is an n× n matrix C such that CA = In.

(k) There is an n× n matrix D such that AD = In.

(l) AT is an invertible matrix.

Don’t let this list intimidate you. One of the main takeaways is that solving either CA = In
or AD = In is sufficient for finding A−1.

Invertible linear transformations: The question of whether a linear transformation T

is invertible is very closely related to the question of matrix inversion. In particular, if
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T : Rn → Rn is a linear transformation with standard matrix A, then T is invertible if and

only if A is invertible. If A is invertible, we can form the inverse transformation S : Rn → Rn,

whose standard matrix is A−1. S and T then satisfy S(T (x)) = x and T (S(y)) = y for all

x and y in Rn.

Ex. With as few calculations as possible, determine if the following matrices are invertible:

1.

3 0 −3

2 0 4

4 0 −7

 ,

2.

 1 −3 −6

0 4 3

−3 6 0

 ,

3.


−1 −3 0 1

3 5 8 −3

−2 −6 3 2

0 −1 2 1

 .

Answer: Not invertible, invertible, invertible.

Ex. Let T : R2 → R2 be a linear transformation whose action is given by

T (x1, x2) = (−5x1 + 9x2, 4x1 − 7x2). (36)

Show that T is invertible and find a formula for T−1(x1, x2).

Answer: T is invertible since

[
−5 9

4 −7

]
is invertible. T−1(x1, x2) = (7x1 + 9x2, 4x1 + 5x2).

A subspace of Rn is any set H in Rn such that

1. The zero vector is in H.

2. For each u and v in H, the sum u + v is in H.

3. For each u in H and each scalar c, the vector cu is in H.
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For v1,v2, . . . ,vp in Rn, the set of all linear combinations of these vectors is a subspace of

Rn. Try to justify this for yourself!

The column space of a matrix A is the set of all linear combinations of the columns of A.

The null space of a matrix A is the set of all solutions of the equation Ax = 0.

Ex. Let

A =

 2 −3 −4

−8 8 6

6 −7 −7

 , p =

 6

−10

11

 . (37)

(a) How many vectors are in the column space of A?

(b) Is p in the column space of A?

Answer: Infinitely many; yes.

Part (a) is potentially confusing. There are infinitely many vectors in the column space

of A simply because there are infinitely many ways to take a linear combination of the

columns. That is, there are infinitely many choices of c1, c2, c3 in the linear combination

c1v1 + c2v2 + c3v3, where v1,v2,v3 are the columns of A.

Ex. Consider the matrix

 3 2 1 −5

−9 −4 1 7

9 2 −5 1

 . (38)

(a) The column space of A is a subspace of Rp. What is p?

(b) The null space of A is a subspace of Rq. What is q?

(c) Find a nonzero vector in the column space of A and find a nonzero vector in the null

space of A.

Answer: p = 3, q = 4. For (c), possible answers are

 1

−3

3

 for the column space and


1

−2

1

0


for the null space.



– 18 –

Much of the material we’ve covered so far leads up to the following definition: A basis for a

subspace H of Rn is a linearly independent set in H that spans H. The concept of a basis

is extremely important! We’ve already seen the standard basis for Rn:

{
e1 =


1

0
...

0

 , e2 =


0

1
...

0

 , . . . , en =


0

0
...

1


}
. (39)

To find the basis for the null space of a matrix A, we simply solve the system Ax = 0 and

write the solution in parametric form. The linearly independent vectors that multiply the

free parameters are then the elements of the basis for Nul A. On the other hand, the basis

for the column space of a matrix is simply the set containing the pivot columns of A.

Question: If A is an n× n invertible matrix, why is Col A a basis for Rn? What is the null

space of an invertible matrix?

Ex. Determine if the following vectors form a basis for R3:

 0

0

−2

 ,
5

0

4

 ,
6

3

2

 . (40)

Answer: The vectors form a basis for R3. You could check if the vectors span R3 and then

check if they are linearly independent, but try to do it in one step!

Ex. Consider the matrix A, which row reduces as follows:

A =


1 4 8 −3 −7

−1 2 7 3 4

−2 2 9 5 5

3 6 9 −5 −2

 ∼


1 4 8 0 5

0 2 5 0 −1

0 0 0 1 4

0 0 0 0 0

 . (41)

Find a basis for Col A and a basis for Nul A.

Answer: Col A :

{
1

−1

−2

3

 ,


4

2

2

6

 ,

−3

3

5

−5


}

, Nul A :

{
2

−2.5

1

0

0

 ,

−7

0.5

0

−4

1


}

.
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An interesting pattern is starting to show up – invertible matrices, which have n pivots, have

n vectors in the basis for their column space (we already knew this had to be true, since the

standard basis vectors in Rn form a basis for any n linearly independent vectors, such as the

columns of an invertible matrix). In the previous example, A had 3 vectors in the basis for

its column space since it had less than n = 5 pivots. The remaining 5 − 3 = 2 degrees of

freedom (the number of free variables!) showed up as vectors in the basis for the null space

of A! The rank theorem encapsulates this relationship.

First, we need a definition: the dimension dim H of a subspace H is the number of vectors

in any basis for H. Then, for a matrix A with n columns, the rank theorem says

dim(Col A) + dim(Nul A) = n. (42)

Question: Can R3 contain a 4-dimensional subspace? Explain.

Ex. True or False:

(a) Each line in Rn is a one-dimensional subspace of Rn.

(b) If a set of p vectors spans a p-dimensional subspace H of Rn, then these vectors form

a basis for H.

(c) The dimension of Nul A is the number of free variables in the equation Ax = 0.

Answer: F, T, T.
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Week 6

The determinant is a quantity associated with any n×n matrix. Determinants have many

useful properties and an interesting meaning in terms of linear transformations, but for now

we’ll focus on how to calculate them. We talked about the basic cofactor expansion method

for calculating determinants in class; this is the most reliable way to find a determinant. Note

that you can perform the cofactor expansion along any row or column!

There are sometimes easier methods than the cofactor expansion for finding determinants.

For example, consider the cofactor expansion for a 3× 3 matrix:

∣∣∣∣∣∣
a b c

d e f

g h i

∣∣∣∣∣∣ = a

∣∣∣∣e f

h i

∣∣∣∣− b ∣∣∣∣d f

g i

∣∣∣∣+ c

∣∣∣∣d e

g h

∣∣∣∣ . (43)

If the matrix is upper triangular, this becomes

∣∣∣∣∣∣
a b c

0 e f

0 0 i

∣∣∣∣∣∣ = a

∣∣∣∣e f

0 i

∣∣∣∣− b ∣∣∣∣0 f

0 i

∣∣∣∣+ c

∣∣∣∣0 e

0 0

∣∣∣∣ = aei− b(0) + c(0) = aei. (44)

Thus, the determinant of an upper triangular matrix is the product of the diagonal entries.

This has some interesting consequences; for example, if the matrix is non-invertible then

there will be a row of zeros and the determinant will vanish! This proves that a matrix is

invertible if and only if its determinant is nonzero.

Ex. Find the determinant of each matrix using a cofactor expansion.

(a)

2 3 −4

4 0 5

5 1 6



(b)


1 0 0 0

2 5 0 0

3 6 8 0

4 7 9 10


Answer: (a) -23, (b) 400.
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Since taking the determinant of a triangular matrix is so simple, you might wonder whether

you can row reduce a matrix to bring it into echelon form before taking its determinant. Un-

fortunately it’s not quite this easy, since performing row operations changes the determinant

in general. In particular, for a square matrix A,

1. If a multiple of one row is added to another row, the determinant does not change.

2. If two rows of A are switched, the determinant is multiplied by −1.

3. If a row of A is scaled by a number k, then the determinant is multiplied by k.

Finally, here are two properties of determinants for n× n matrices A and B:

1. det(AB) = (det A)(det B)

2. det(AT) = det A

Note that det(A + B) is not equal to det A + det B in general!

Ex. Calculate the determinant by row reduction methods.


1 −1 3 0

0 1 5 4

−1 2 8 5

3 −1 −2 3

 (45)

Answer: 3.

Ex. Let A and B be 3 × 3 matrices, with det A = 4 and det B = −3. Use properties of

determinants to compute:

(a) det AB

(b) det 5A

(c) det BT

(d) det A−1

(e) det A3
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Answer: (a) -12, (b) 500, (c) -3, (d) 1/4, (e) 64.

Ex. Use determinants to decide whether the following vectors are linearly independent:

 7

−4

−6

 ,
−8

5

7

 ,
7

0

5

 . (46)

Answer: Linearly independent.

Ex. Use row reduction to show that

(a)

∣∣∣∣a b

c d

∣∣∣∣ = ad− bc

(b)

∣∣∣∣∣∣
a b c

d e f

0 0 i

∣∣∣∣∣∣ = aei− dbi.

Vector Spaces: A vector space V is a set of objects, called vectors, on which we define

addition and multiplication operations that satisfy several axioms. Many of the axioms

might seem obvious, but it will pay off to learn them! For all vectors u, v, w in V and for

all scalars c and d, we have:

1. u + v = v + u.

2. (u + v) + w = u + (v + w).

3. There is a vector 0 in V such that u + 0 = u.

4. For each u in V , there is a vector −u in V such that u + (−u) = 0.

5. c(u + v) = cu + cv.

6. (c+ d)u = cu + du.

7. c(du) = (cd)u.

8. 1u = u.
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Additionally, we require that vector spaces are closed under addition and scalar multipli-

cation. This should remind you of subspaces, and indeed, a subspace is just a subset of a

vector space that contains 0 and that is closed under addition and scalar multiplication.

A useful example of a vector space is the set of polynomials of degree n, called Pn. This

vector space consists of all polynomials of the form

p(t) = a0 + a1t+ a2t
2 + · · ·+ ant

n. (47)

Try to convince yourself that Pn satisfies all of the addition, multiplication, and closure

axioms.

When studying subspaces, we saw that the span of a set of vectors in Rn always forms a

subspace of Rn. A similar statement holds in the more general vector space context: If

v1, . . . ,vn are in a vector space V , then Span{v1, . . . ,vn} is a subspace of V . Try to prove

this yourself!

Ex. Determine if the given set is a subspace of Pn, for an appropriate value of n.

(a) All polynomials of degree 3 with integer coefficients.

(b) All polynomials of degree n such that p(0) = 0.

Answer: The first set is not a subspace; the second set is a subspace.

Ex. Let W be the set of all vectors of the form

2b+ 3c

−b
2c

 , (48)

where b and c are arbitrary constants. Find vectors u and v such that W = Span{u,v}.
Why does this show that W is a subspace of R3?

Answer: W = Span

{ 2

−1

0

 ,
3

0

2

}.

Ex. Let W be the set of all vectors of the form
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(a)

 4a+ 3b

0

a+ 3b+ c



(b)

 4a+ 3b

1

a+ 3b+ c


where a, b, and c are arbitrary constants. Is W a vector space?

Answer: (a) Yes, (b) no.

Ex. Let W be the following set of vectors:

(a)

{ab
c

 : a+ b+ c = 2

}

(b)

{
p

q

r

s

 : p− 3q = 4s, 2p = s+ 5r

}

Is W a vector space?

Answer: (a) No, (b) yes.
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Week 7

Before we continue with the vector space material, let’s review column and null spaces. If A

is an m× n matrix, then the null space of A, which is the set of all solutions to Ax = 0,

is a subspace of Rn. The column space of A, which is the span of the columns of A, is a

subspace of Rm.

Prove these statements about the null space and the column space – what three properties do

you need to check for each to show that it is a subspace?

We now generalize our previous results about transformations from Rn → Rm to results

about transformations between vector spaces. A linear transformation T : V → W from

a vector space V to a vector space W is a rule that assigns each vector x in V a unique

vector T (x) in W such that

1. T (u + v) = T (u) + T (v)

2. T (cu) = cT (u)

for all u, v in V and any constant c. The kernel (or null space – the terms are interchange-

able) of a linear transformation T is the set of all u in V such that T (u) = 0. Note that this

0 is the zero vector in W ! The range of T is the set of all possible images T (x) in W . It

should be clear that if T is a transformation such that T (x) = Ax then the kernel of T is

the null space of A and the range of T is the column space of A.

Ex. If T : P2 → R2 is given by T (p) =

[
p(0)

p(1)

]
,

(a) Show that T is a linear transformation.

(b) Find a polynomial p(t) in P2 that spans the kernel of T .

(c) Find a set of vectors in R2 that spans the range of T .

Answer: (a) Check the linearity properties, (b) p(t) = t− t2, (c)
{[1

0

]
,

[
0

1

]}
.

The concepts of linear independence and basis extend naturally to vector spaces. In par-

ticular, a set of vectors {v1, . . . ,vn} in a vector space V is linearly independent if the

equation
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c1v1 + · · ·+ cnvn = 0 (49)

only has the trivial solution c1 = · · · = cn = 0. A set of vectors {b1, . . . ,bn} in a vector

space V is a basis for V if the vectors are both linearly independent and they span V .

For example, the standard basis for Pn is the set {1, t, t2, . . . , tn}. It’s clear that this set

spans Pn, since a linear combination of these vectors is the most general polynomial of degree

n: a0(1) + a1(t) + a2(t
2) + · · · + an(tn) can describe any polynomial in Pn. The set is also

linearly independent, since the only solution of a0 + a1t+ a2t
2 + · · ·+ ant

n = 0 is the trivial

solution a1 = · · · = an = 0. (proving this is slightly tricky).

Question: Consider the polynomials p(t) = 1+t2 and q(t) = 1−t2 in P2. Is {p,q} a linearly

independent set? Why or why not?

Finally, let’s look at the idea of a spanning set through an example. Consider the polynomials

p(t) = 1 + t2, q(t) = 1 − t2 and r(t) = 2 in P2. It’s clear that p + q = r, so these vectors

are not linearly independent. The spanning set theorem says that if a vector v in a

set S is a linear combination of the other vectors, then the set S ′ formed by removing v

from S has the same span as S: Span(S) = Span(S ′). In our example, this means that

Span{p,q, r} = Span{p,q}.

Since basis vectors must be linearly independent, a valid basis for a subspace corresponds to

the smallest possible spanning set for that subspace. Continuing with the example, {p,q}
(or {p, r}, or {q, r}) is a valid basis for Span{p,q, r}, but {p,q, r} is not.

Ex. True or false:

(a) A set consisting of a single vector is linearly dependent.

(b) If a subspace H = Span{b1, . . . ,bp}, then {b1, . . . ,bp} is a basis for H.

(c) A linearly independent set in a subspace H is a basis for H.

(d) If the matrix A is row equivalent to B, then the pivot columns of B form a basis for

Col A.

Answer: (a) F (unless it’s the zero vector), (b) F, (c) F, (d) F (remember that we want the

pivot columns of the original matrix).
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Week 8

Change of Basis: Consider a basis B for R2 consisting of the vectors b1 and b2, where

we know the components of b1 and b2 with respect to the standard basis. If we know the

components of a vector x with respect to the standard basis, recall that we can write it as

x =

[
x1
x2

]
= x1

[
1

0

]
+ x2

[
0

1

]
= x1e1 + x2e2. (50)

We now ask what the components of x are in the new basis B. That is, if we write

x = x′1b1 + x′2b2, (51)

then what are the coordinates x′1 and x′2 of x with respect to B? Remember that we

know the coordinates of b1 and b2 with respect to the standard basis, so we can write

b1 = b11e1 + b12e2 and b2 = b21e1 + b22e2. Inserting these into equation (2) gives

x = (x′1b11 + x′2b21)e1 + (x′1b12 + x′2b22)e2. (52)

Comparing equations (1) and (3), we see that x1 = x′1b11 + x′2b21 and x2 = x′1b12 + x′2b22, or

[
x1
x2

]
=

[
b11 b21
b12 b22

] [
x′1
x′2

]
. (53)

Letting [x]B denote the coordinates of x with respect to the basis B, we therefore have

[x] =

[
b11 b21
b12 b22

]
[x]B = P[x]B. (54)

P = [b1 b2] is called the change of coordinates matrix. Note that [x] with respect to the

standard basis is the same thing as x, but I’ve used the brackets in equation (5) to be

consistent with the lecture.

Ex. Let b1 =

[
2

1

]
, b2 =

[
−1

1

]
, and x =

[
4

5

]
. Find the coordinates of x with respect to the

B basis.

Answer: x = 3b1 + 2b2, or [x]B =

[
3

2

]
.
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Ex. Let

b1 =

3

6

2

 , b2 =

−1

0

1

 , x =

 3

12

7

 . (55)

B = {b1,b2} is a basis for H = Span{b1,b2}. Determine if x is in H. If it is, find the

coordinates of x relative to B.

Answer: x is in H, and [x]B =

[
2

3

]
.

Ex. In P2, find the change of coordinates matrix from the basis B = {1 − 2t + t2, 3 −
5t + 4t2, 2t + 3t2} to the standard basis {1, t, t2}. Then find the coordinates of the vector

p = −1 + 2t in the B basis.

Answer: P =

 1 3 0

−2 −5 2

1 4 3

, [p]B =

 5

−2

1

.

Ex. Consider the polynomials 1, 1− t, 2− 4t+ t2, and 6− 18t+ 9t2 − t3.

(a) Show that these polynomials form a basis B for P3.

(b) Find the coordinates of p = 5 + 5t− 2t2 relative to B.

Answer: [p]B =


6

3

−2

0

.

Dimension: Continuing the theme from last week, we now generalize some of the results

for subspaces of Rn to results for general vector spaces:

1. The dimension of a vector space V is the number of vectors in any basis for V .

2. If H is a subspace of a vector space V , then dim H ≤ dim V .

3. Let T : V → W be a linear transformation from a vector space V to a vector space

W . Then dim(Range(T )) + dim(Kernel(T )) = dim V . (This should remind you of the

rank theorem!)
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Ex. Find the dimension of the subspace H of all vectors in R3 whose first and third entries

are equal, and find an explicit basis for this subspace.

Answer: dim H = 2,

{1

0

1

 ,
0

1

0

}.

Ex. True or False:

(a) The dimension of the vector space Pn is n.

(b) R2 is a two-dimensional subspace of R3.

(c) If there is a linearly independent set of vectors {v1, . . . ,vp} in a vector space V , then

dim V ≥ p.

(d) If there is a set of vectors {v1, . . . ,vp} that spans a vector space V , then dim V ≤ p.

Answer: F, F, T, T. Careful, part (b) is tricky!

We’ve seen many properties of column spaces. Now let’s look at the row space, which is the

set of all linear combinations of the row vectors of a matrix A (or the span of the rows of A).

For an m× n matrix, the row vectors are elements of Rn, but they are written horizontally

rather than vertically (for example, r = [r1, r2, . . . , rn]). The row space is clearly a vector

space since it’s the span of a collection of vectors.

A key fact about row spaces is that row reduction does not change the row space of a matrix.

So, to find the basis for the row space of a matrix, we can row reduce as much as possible

(i.e., to reduced echelon form) and just read off a basis!

For example, if the matrix A row reduces as follows,

A =


−2 −5 8 0 −17

1 3 −5 1 5

3 11 −19 7 1

1 7 −13 5 −3

 ∼


1 3 −5 1 5

0 1 −2 2 −7

0 0 0 −4 20

0 0 0 0 0

 , (56)

then a basis for Row A is just {[1, 3,−5, 1, 5], [0, 1,−2, 2,−7], [0, 0, 0,−4, 20]}.

Recall the rank theorem: dim(Col A) + dim(Nul A) = n, where n is the number of columns

in A. It turns out that dim(Col A) = dim(Row A), so we call this number the rank of A.
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Question: If A is a 7× 9 matrix with a two-dimensional null space, what is rank A? Can a

6× 9 matrix have a two-dimensional null space?

Ex. If the matrix A row reduces as follows,

A =


2 6 −6 6 3 6

−2 −3 6 −3 0 −6

4 9 −12 9 3 12

−2 3 6 3 3 −6

 ∼


2 6 −6 6 3 6

0 3 0 3 3 0

0 0 0 0 3 0

0 0 0 0 0 0

 , (57)

(a) Find rank A and dim(Nul A) (no long calculations allowed!).

(b) Find bases for Col A, Row A, and Nul A.

Answer: rank A = 3, dim(Nul A) = 3,

Col A:

{
2

−2

4

−2

 ,


6

−3

9

3

 ,


3

0

3

3


}

,

Row A: {[2, 6,−6, 6, 3, 6], [0, 3, 0, 3, 3, 0], [0, 0, 0, 0, 3, 0]},

Nul A:

{


3

0

1

0

0

0


,



0

−1

0

1

0

0


,



−3

0

0

0

0

1


}

.
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Week 9

An eigenvector of an n × n matrix A is a nonzero vector x such that Ax = λx for some

scalar λ. Here, x is the eigenvector corresponding to the eigenvalue λ. Note that there

may be more than one eigenvector corresponding to a single eigenvalue (but not the other

way around!).

The eigenvalue equation is closely related to the equation (A−λIn)x = 0. For a given λ, the

set of all nontrivial solutions to this equation (i.e., the set of all eigenvectors corresponding

to λ) is called the eigenspace of A corresponding to λ. This means that the eigenspace of

A corresponding to λ is just the null space of (A− λIn)!

Ex. Let A =

4 −1 6

2 1 6

2 −1 8

. Find a basis for the eigenspace corresponding to the eigenvalue

λ = 2.

Answer: One possible basis is

{1

2

0

 ,
0

6

1

}, but the particular basis you find will depend

on the free variables you choose.

Let’s try to get some intuition for what’s going on here by finding the eigenvalues and

eigenvectors of the following matrix:

A =

2 2 2

2 2 2

2 2 2

 . (58)

It should be clear that the equation Ax = 0 has two free variables. But Ax = 0 is just the

eigenvalue equation with λ = 0! So, if we can find vectors in the null space of A, these will

be eigenvectors corresponding to λ = 0.

What do these vectors look like? Trial and error (or a short calculation) leads to

 1

−1

0

 ,
 1

0

−1

 (59)

(or a linear combination of these). Here we have two linearly independent eigenvectors

corresponding to the same eigenvalue. However, the reverse of this can’t happen:
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If v1, . . . ,vr are eigenvectors corresponding to distinct eigenvalues λ1, . . . , λr, then the set

{v1, . . . ,vr} is linearly independent.

Question: For a 2 × 2 matrix A, can there be more than two eigenvectors corresponding to

a single eigenvalue? What is the maximum number of distinct eigenvalues A can have?

It’s very useful to think of eigenvectors and eigenvalues geometrically in terms of linear

transformations. For a linear transformation T : Rn → Rn given by T (x) = Ax, eigenvectors

of A correspond to vectors that T scales by some number λ, without changing their direction.

Ex. Let T : R2 → R2 be the linear transformation that

(a) Reflects vectors about the x-axis;

(b) Rotates vectors by 180 degrees counterclockwise.

Using pictures, find the eigenvectors and corresponding eigenvalues for each transformation.

Answer: (a) λ = 1→
[
1

0

]
, λ = −1→

[
0

−1

]
; (b) λ = −1→

[
1

0

]
,

[
0

1

]
.

Part (b) is a very good example to learn from. The two eigenvectors corresponding to λ = −1

actually form a basis for R2, so the eigenspace corresponding to λ = −1 is all of R2. This

means that the null space of the matrix (A − (−1)I2) is two-dimensional. When can this

happen? Think about the rank theorem!

The procedure for finding the eigenvalues and eigenvectors of any matrix is straightforward.

Remember that we need to find nontrivial solutions to (A− λIn)x = 0. This equation only

has a nontrivial solution if there is at least one free variable, meaning that (A− λIn) is not

invertible. But this means that det(A− λIn) = 0!

Note: det(A − λIn) = 0 is called the characteristic equation, and the characteristic

polynomial is just this equation written as a polynomial in λ. For an n × n matrix, the

polynomial will be of order λn.

So, here’s the step-by-step procedure for finding the eigenvalues and eigenvectors of any n×n
matrix A:

1. Solve det(A− λIn) = 0 to find the eigenvalues.

2. For each eigenvalue λi, solve (A− λiIn)x = 0 to find the corresponding eigenvectors.
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Note: λ = 0 is an allowed eigenvalue, but x = 0 is never an allowed eigenvector.

Ex. Find the eigenvalues and corresponding eigenvectors of the following matrices.

(a)

[
8 2

3 3

]

(b)

[
8 4

4 8

]

(c)

3 0 0

2 1 4

1 0 4



Answer: (a) λ = 9→
[
2

1

]
, λ = 2→

[
1

−3

]
; (b) λ = 12→

[
1

1

]
, λ = 4→

[
1

−1

]
;

(c) λ = 4→

0

4

3

, λ = 3→

−1

1

1

, λ = 1→

0

1

0

.

The multiplicity of an eigenvalue λ is the number of times it appears as a root of the

characteristic equation. For example, if the characteristic equation of a 6 × 6 matrix is

λ6−4λ5−12λ4 = λ4(λ−6)(λ+2), then the eigenvalues are 0 (multiplicity 4), 6 (multiplicity

1), and −2 (multiplicity 1); or, we could list them as 0, 0, 0, 0, 6,−2.

Ex. For the following matrix, find the eigenvalues (including their multiplicities) and find a

basis for the eigenspace corresponding to each eigenvalue:


5 5 0 2

0 2 −3 6

0 0 3 −2

0 0 0 5

 . (60)

Answer: λ = 5 (multiplicity 2), λ = 3 (multiplicity 1), λ = 2 (multiplicity 1); λ = 5 →

{
1

0

0

0


}

, λ = 3→

{
−15

6

−2

0


}

, λ = 2→

{
−5

3

0

0


}

.
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Two n × n matrices A and B are similar if there is an invertible matrix P such that

A = PBP−1 (or B = P−1AP). If A and B are similar matrices, then they have the same

characteristic equation and the same eigenvalues. However, the eigenvectors corresponding

to each eigenvalue will not generally be the same for each matrix. In addition, if two matrices

have the same eigenvalues then they are not necessarily similar.

If an n×n matrix A has n linearly independent eigenvectors, then A is similar to a diagonal

matrix D. The entries of this diagonal matrix are the eigenvalues corresponding to each

eigenvector, and the columns of the matrix P that brings A into a diagonal form are the

eigenvectors of A. Let’s sum this up using equations:

If A has n linearly independent eigenvectors v1,v2, . . . ,vn corresponding to the eigenvalues

λ1, λ2, . . . , λn (note: some of these eigenvalues might be repeated! ), then A = PDP−1, where

the matrix P = [v1 v2 . . . vn] and

D =


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

 . (61)

Bringing a matrix into a diagonal form using its eigenvectors is called diagonalization.

Here are the steps to diagonalize any n× n matrix A:

1. Find the eigenvalues and the corresponding eigenvectors of A.

2. Check whether there are n linearly independent eigenvectors.

3. If there are n linearly independent eigenvectors, then A is diagonalizable, meaning

A = PDP−1. The columns of P are the eigenvectors and the diagonal entries of D

are the corresponding eigenvalues.

Let’s look at an example: suppose we want to diagonalize the matrix

A =

 1 3 3

−3 −5 −3

3 3 1

 . (62)

This means that we need to find an invertible matrix P and a diagonal matrix D such

that A = PDP−1. Step 1 gives us the eigenvalues λ1 = −2, λ2 = −2, λ3 = 1, and the

corresponding eigenvectors
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v1 =

−1

0

1

 ,v2 =

−1

1

0

 ,v3 =

 1

−1

1

 . (63)

These vectors are clearly linearly independent, but it’s good to do step 2 carefully by row

reducing the matrix formed out of these vectors. We have three linearly independent eigen-

vectors, so A is diagonalizable: A = PDP−1, with

P =

−1 0 1

−1 1 0

1 −1 1

 , D =

−2 0 0

0 −2 0

0 0 1

 . (64)

You should check that this works by taking the inverse of P and finding PDP−1. (There’s

also a way to check whether A = PDP−1 works without having to find P−1!)

Ex. Diagonalize the following matrices, if possible:

(a)

[
2 −1

1 4

]

(b)

[
1 0

6 −1

]

Answer: (a) Not diagonalizable; (b) P =

[
1 0

3 1

]
, D =

[
1 0

0 −1

]
.

Diagonalization is useful for finding the powers of a matrix. If A is a diagonalizable matrix

with A = PDP−1, then A2 = PDP−1PDP−1 = PDDP−1 = PD2P−1. This works the

same way for higher powers, so Ak = PDkP−1. This is helpful because Dk is very easy to

find (remember, D is diagonal!).

Ex. For the matrix A =

[
1 0

6 −1

]
from the previous exercise, find A5.

Answer: A5 = A.



– 36 –

Week 10

Ex. Diagonalize the following matrix, if possible:


5 0 0 0

0 5 0 0

1 4 −3 0

−1 −2 0 −3

 . (65)

Answer: The matrix is diagonalizable, with

P =


8 0 0 0

0 4 0 0

1 2 1 0

−1 −1 0 1

 , D =


5 0 0 0

0 5 0 0

0 0 −3 0

0 0 0 −3

 . (66)

Recall that diagonalization allows us to find the powers of a matrix very quickly. In partic-

ular, if A = PDP−1, then Ak = PDkP−1. This is “easy” because Dk is simply the matrix

with each diagonal entry of D raised to the kth power. However, don’t forget to do the final

matrix multiplication step with P and P−1!

Ex. Compute the following powers of each matrix using diagonalization:

(a) A4, where A =

[
4 −3

2 −1

]
.

(b) B2, where B =

[
a 0

2(a− b) b

]
(a 6= b).

Answer: (a)

[
46 −45

30 −29

]
, (b)

[
a2 0

2(a2 − b2) b2

]
.

Ex. True or False:

(a) If an n× n matrix A is diagonalizable, then A has n distinct eigenvalues.

(b) If a matrix A is invertible, then A is diagonalizable.

(c) If the eigenvectors of an n×n matrix A form a basis for Rn, then A is diagonalizable.
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(d) A is a 5× 5 matrix with two distinct eigenvalues; one eigenspace is three-dimensional,

and the other eigenspace is two-dimensional. A is diagonalizable.

Answer: F, F, T, T.

Warning – so far, all of the matrices that we’ve encountered have had real eigenvalues, but

this isn’t always the case. Consider the matrix

[
0 1

−1 0

]
. (67)

The characteristic equation for this matrix is λ2 + 1 = 0, so there are no real eigenvalues !

(The complex eigenvalues are ±i.)

Here are two useful facts about similar matrices that we mentioned briefly last week:

1. Similar matrices have the same determinant. If A is similar to B, then A = PBP−1

for some invertible matrix P. Then

det(A) = det(PBP−1) = det(P) det(B) det(P−1) = det(P) det(B)
1

det(P)
= det(B).

(68)

2. Similar matrices have the same eigenvalues. If A = PBP−1, then

A− λIn = PBP−1 − λPP−1 = P(BP−1 − λP−1) = P(B− λIn)P−1. (69)

This means that det(A−λIn) = det(B−λIn), so A and B have the same characteristic

equation and the same eigenvalues.

We can combine many of the concepts we’ve seen so far, including linear transformations,

abstract vector spaces, and eigenvectors/eigenvalues, by looking at the eigenvectors of a

general linear transformation T : V → V . Remember that we can write the action of T on

vectors in V as T (x) = Ax, where the standard matrix A = [T (e1) . . . T (en)] ({e1, . . . , en}
is the standard basis for V ).

We can convert vectors in V to column vectors by using their coordinates with respect to

the standard basis. For example, the polynomial p(t) = 1 + t− 5t2 in P2 corresponds to the

coordinate vector
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[p] =

 1

1

−5

 . (70)

Make sure to pay attention to the vector space that you’re working in; if we had been thinking

of p(t) = 1 + t− 5t2 as an element of P3, then its coordinate vector would have been

[p] =


1

1

−5

0

 . (71)

Ex. Let T : P2 → P2 be given by T (p) = p(0) + p(0)t+ p(−1)t2.

(a) Find the standard matrix A for this transformation.

(b) What are the eigenvalues and eigenvectors of A? Write the eigenvectors as polynomials.

(c) Is A diagonalizable?

Answer: (a) A =

1 0 0

1 0 0

1 −1 1

, (b) λ = 1→ 1 + t, t2, λ = 0→ t+ t2, (c) yes.

Ex. Let T : P1 → P1 be given by T (p) = p′(1) + 2p′(1)t.

(a) Find the standard matrix A for this transformation.

(b) What are the eigenvalues and eigenvectors of A? Write the eigenvectors as polynomials.

(c) Diagonalize A, if possible.

(d) Find T 4(q), where q = 5 + 5t. (Hint: use part (c)!)

Answer: (a) A =

[
0 1

0 2

]
, (b) λ = 2→ 1 + 2t, λ = 0→ 1 + 0t, (c) P =

[
1 1

2 0

]
, D =

[
2 0

0 0

]
,

(d) T 4(q) = 40 + 80t.
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One question that we’ve never really addressed is why diagonalization works: Why should

an n × n matrix with n linearly independent eigenvectors be similar to a diagonal matrix,

and why do the eigenvectors and eigenvalues show up in the formula A = PDP−1? The

answer is very elegant, and it’s related to the concept of change of basis.

Recall that if we have a basis B = {b1,b2, . . . ,bn} for Rn, then the coordinates of a vector

x with respect to the standard basis are related to the coordinates of x with respect to the

B basis by

[x] = P[x]B, (72)

where P = [b1 . . .bn].

How does a matrix transform under a change of basis? So far, we’ve always implicitly

used matrices defined with respect to the standard basis; when we write A, we mean

[A(e1) . . .A(en)]. To find [A]B, we need to account for the fact that both the basis vectors

and the coordinate system that we’re expressing the columns of A in change. In particular,

[A]B = [[A(b1)]B . . . [A(bn)]B]. But A(b) is just a vector, so we can use equation 6 to write

[A(b)]B = P−1A(b). Then

[A]B = [P−1A(b1) . . .P
−1A(bn)] = P−1A[b1 . . .bn] = P−1AP, (73)

or equivalently A = P[A]BP−1.

This should look very familiar! What we’ve found is that applying a similarity transformation

to A is related to changing the basis we’re working in. In particular, if we write A = PDP−1,

the matrix D is just the old matrix A expressed in the basis formed by the columns of P.

Finally, we can relate this to eigenvectors and eigenvalues. If an n×n matrix A has n linearly

independent eigenvectors, then A = PDP−1 means that the matrix A, expressed in a basis

formed by its eigenvectors, is diagonal. This should make sense: if we align our coordinate

system with the eigenvectors of A, then A simply scales each basis vector and doesn’t “mix”

them together. The amount that each vector gets scaled by is the corresponding eigenvalue,

which is why these are the entries of the matrix D!


